Solve the given game tree using min max algorithm.

Step-by-Step Minimax Algorithm
Tree Levels:
- Level 1 (Root Node): Maximizer (A)
- Level 2: Minimizer (B, C)
- Level 3: Maximizer (D, E, F, G)
- Level 4 (Leaf Nodes): Terminal nodes with values
Terminal Node Values:
- ( H = -1 )
- ( I = 4 )
- ( J = 2 )
- ( K = 6 )
- ( L = -3 )
- ( M = -5 )
- ( N = 0 )
- ( O = 7 )
Step 1: Evaluate Leaf Nodes (Level 4)
Step 2: Propagate Values to Level 3 (Maximizer Nodes D, E, F, G)
-
Node D:
- Children: H (-1), I (4)
- Value of D: (\max(-1, 4) = 4)
-
Node E:
- Children: J (2), K (6)
- Value of E: (\max(2, 6) = 6)
-
Node F:
- Children: L (-3), M (-5)
- Value of F: (\max(-3, -5) = -3)
-
Node G:
- Children: N (0), O (7)
- Value of G: (\max(0, 7) = 7)
Step 3: Propagate Values to Level 2 (Minimizer Nodes B, C)
-
Node B:
- Children: D (4), E (6)
- Value of B: (\min(4, 6) = 4)
-
Node C:
- Children: F (-3), G (7)
- Value of C: (\min(-3, 7) = -3)
Step 4: Propagate Values to Level 1 (Maximizer Node A)
- Node A:
- Children: B (4), C (-3)
- Value of A: (\max(4, -3) = 4)
Result:
The optimal value for the root node (A) using the Minimax algorithm is 4. Therefore, the best move for the maximizer at node A is to follow the path leading through node B.
Propagated Values in the Tree:
A (4)
/ \
B (4) C (-3)
/ /
D (4) F (-3) G (7)
/ \ / \ / \
H(-1) I(4) L(-3) M(-5) N(0) O(7)
E (6)
/ \
J(2) K(6)
This solution demonstrates how the Minimax algorithm is used to determine the optimal move for a player, ensuring that the chosen strategy minimizes the maximum possible loss.