My Blog.

MM - Regression and Classification using Scikit-learn

Creating mind maps for key concepts in regression and classification using Scikit-learn can help you quickly recall the material. Here are some keywords and short sentences you can use for your mind maps:

Regression

Linear Regression

  • Definition: Linear relationship between variables.
  • Formula: (y = mx + c)
  • Libraries: LinearRegression
  • Example: Predict house prices.
  • Key Functions: fit(), predict()
  • Metrics: Mean Squared Error (MSE), R-squared ((R^2))

Multiple Linear Regression

  • Multiple Variables: Use more than one predictor.
  • Libraries: LinearRegression
  • Example: Predict sales based on marketing spend.
  • Key Functions: fit(), predict()
  • Metrics: MSE, (R^2)

Logistic Regression

  • Binary Classification: Predict probability of class.
  • Formula: Sigmoid function (P(y=1) = \frac{1}{1+e^{-z}})
  • Libraries: LogisticRegression
  • Example: Predict if an email is spam.
  • Key Functions: fit(), predict(), predict_proba()
  • Metrics: Confusion Matrix, Classification Report (Precision, Recall, F1-score)

Classification

Naive Bayes

  • Definition: Based on Bayes' theorem.
  • Types: GaussianNB, MultinomialNB, BernoulliNB.
  • Libraries: GaussianNB, MultinomialNB, BernoulliNB
  • Example: Text classification.
  • Key Functions: fit(), predict(), predict_proba()
  • Metrics: Confusion Matrix, Classification Report

Decision Trees

  • Definition: Tree-like model of decisions.
  • Libraries: DecisionTreeClassifier
  • Example: Predict customer churn.
  • Key Functions: fit(), predict()
  • Visualization: plot_tree()
  • Metrics: Confusion Matrix, Classification Report

General Concepts

Data Preprocessing

  • Scaling: StandardScaler
  • Encoding: OneHotEncoder
  • Imputation: SimpleImputer

Model Evaluation

  • Train/Test Split: train_test_split
  • Metrics: Accuracy, Precision, Recall, F1-score, MSE, (R^2)

Scikit-learn Basics

  • Installation: pip install scikit-learn
  • Datasets: load_iris(), load_digits()
  • Common Classes: LinearRegression, LogisticRegression, GaussianNB, DecisionTreeClassifier
  • Key Methods: fit(), predict(), score()

Mind Map Example Structure

1. Regression
   - Linear Regression
     - Definition
     - Formula
     - Libraries
     - Example
     - Key Functions
     - Metrics
   - Multiple Linear Regression
     - Multiple Variables
     - Libraries
     - Example
     - Key Functions
     - Metrics
   - Logistic Regression
     - Binary Classification
     - Formula
     - Libraries
     - Example
     - Key Functions
     - Metrics
2. Classification
   - Naive Bayes
     - Definition
     - Types
     - Libraries
     - Example
     - Key Functions
     - Metrics
   - Decision Trees
     - Definition
     - Libraries
     - Example
     - Key Functions
     - Visualization
     - Metrics
3. General Concepts
   - Data Preprocessing
     - Scaling
     - Encoding
     - Imputation
   - Model Evaluation
     - Train/Test Split
     - Metrics
   - Scikit-learn Basics
     - Installation
     - Datasets
     - Common Classes
     - Key Methods

Use these keywords and short sentences to structure your mind map. Each branch should be a topic or subtopic, making it easy to visually organize and recall the information. Let me know if you need further assistance!