MM - Regression and Classification using Scikit-learn
Creating mind maps for key concepts in regression and classification using Scikit-learn can help you quickly recall the material. Here are some keywords and short sentences you can use for your mind maps:
Regression
Linear Regression
- Definition: Linear relationship between variables.
- Formula: (y = mx + c)
- Libraries:
LinearRegression - Example: Predict house prices.
- Key Functions:
fit(),predict() - Metrics: Mean Squared Error (MSE), R-squared ((R^2))
Multiple Linear Regression
- Multiple Variables: Use more than one predictor.
- Libraries:
LinearRegression - Example: Predict sales based on marketing spend.
- Key Functions:
fit(),predict() - Metrics: MSE, (R^2)
Logistic Regression
- Binary Classification: Predict probability of class.
- Formula: Sigmoid function (P(y=1) = \frac{1}{1+e^{-z}})
- Libraries:
LogisticRegression - Example: Predict if an email is spam.
- Key Functions:
fit(),predict(),predict_proba() - Metrics: Confusion Matrix, Classification Report (Precision, Recall, F1-score)
Classification
Naive Bayes
- Definition: Based on Bayes' theorem.
- Types: GaussianNB, MultinomialNB, BernoulliNB.
- Libraries:
GaussianNB,MultinomialNB,BernoulliNB - Example: Text classification.
- Key Functions:
fit(),predict(),predict_proba() - Metrics: Confusion Matrix, Classification Report
Decision Trees
- Definition: Tree-like model of decisions.
- Libraries:
DecisionTreeClassifier - Example: Predict customer churn.
- Key Functions:
fit(),predict() - Visualization:
plot_tree() - Metrics: Confusion Matrix, Classification Report
General Concepts
Data Preprocessing
- Scaling:
StandardScaler - Encoding:
OneHotEncoder - Imputation:
SimpleImputer
Model Evaluation
- Train/Test Split:
train_test_split - Metrics: Accuracy, Precision, Recall, F1-score, MSE, (R^2)
Scikit-learn Basics
- Installation:
pip install scikit-learn - Datasets:
load_iris(),load_digits() - Common Classes:
LinearRegression,LogisticRegression,GaussianNB,DecisionTreeClassifier - Key Methods:
fit(),predict(),score()
Mind Map Example Structure
1. Regression
- Linear Regression
- Definition
- Formula
- Libraries
- Example
- Key Functions
- Metrics
- Multiple Linear Regression
- Multiple Variables
- Libraries
- Example
- Key Functions
- Metrics
- Logistic Regression
- Binary Classification
- Formula
- Libraries
- Example
- Key Functions
- Metrics
2. Classification
- Naive Bayes
- Definition
- Types
- Libraries
- Example
- Key Functions
- Metrics
- Decision Trees
- Definition
- Libraries
- Example
- Key Functions
- Visualization
- Metrics
3. General Concepts
- Data Preprocessing
- Scaling
- Encoding
- Imputation
- Model Evaluation
- Train/Test Split
- Metrics
- Scikit-learn Basics
- Installation
- Datasets
- Common Classes
- Key Methods
Use these keywords and short sentences to structure your mind map. Each branch should be a topic or subtopic, making it easy to visually organize and recall the information. Let me know if you need further assistance!