MM - Introduction to Scikit-learn, Installations, Dataset
Sure, creating a mind map with keywords and short sentences can help you recall the key concepts of Unit 4 effectively. Here’s a structured list of keywords and short sentences for each topic within the unit:
Predictive Data Analytics with Python
Introduction
- Predictive Analytics: Uses historical data to predict future events.
- Importance: Key in decision-making, risk management, and strategic planning.
Essential Python Libraries
- NumPy: Numerical computing, arrays, matrices.
- Pandas: Data manipulation, DataFrame.
- Matplotlib & Seaborn: Data visualization.
- Scikit-learn: Machine learning, data mining, data analysis.
Basic Examples
- Reading Data: Pandas read CSV.
- Data Operations: Filtering, sorting, grouping.
Data Preprocessing
- Removing Duplicates: Ensure unique data points.
- Transformation: Apply functions, mapping.
- Replacing Values: Substitute specific values.
- Handling Missing Values: Fill or drop missing data.
Types of Data Analytics
- Predictive: Predict future outcomes.
- Descriptive: Summarize past data.
- Prescriptive: Recommend actions.
Key Algorithms
- Association Rule Learning:
- Apriori: Frequent itemsets, association rules.
- FP-Growth: Efficient frequent itemsets.
- Regression Analysis:
- Linear Regression: Relationship between variables.
- Logistic Regression: Binary classification.
- Classification Algorithms:
- Naive Bayes: Based on Bayes' theorem, independence assumption.
- Decision Trees: Tree-like model of decisions.
Introduction to Scikit-learn
- Installation:
pip install scikit-learn. - Dataset: Built-in datasets, e.g., Iris, Digits.
- Math Library: NumPy integration.
- Filling Missing Values:
SimpleImputer. - Regression & Classification: Use Scikit-learn API.
Example Keywords and Short Sentences for a Mind Map:
Central Node: Predictive Data Analytics with Python
-
Introduction
- Predictive Analytics: Predict future
- Importance: Decision-making, risk management
-
Essential Python Libraries
- NumPy: Numerical arrays, matrices
- Pandas: DataFrame, data manipulation
- Matplotlib & Seaborn: Visualization
- Scikit-learn: ML, data analysis
-
Basic Examples
- Reading Data: Pandas CSV
- Data Operations: Filter, sort, group
-
Data Preprocessing
- Remove Duplicates: Unique data
- Transformation: Functions, mapping
- Replace Values: Substitute values
- Handle Missing Values: Fill, drop
-
Types of Data Analytics
- Predictive: Future outcomes
- Descriptive: Summarize past
- Prescriptive: Recommend actions
-
Key Algorithms
- Association Rules: Apriori, FP-Growth
- Regression: Linear, Logistic
- Classification: Naive Bayes, Decision Trees
-
Scikit-learn
- Installation:
pip install - Dataset: Iris, Digits
- Math Library: NumPy
- Fill Missing Values:
SimpleImputer - Regression & Classification: API
- Installation:
Visualizing the Mind Map
Here's a textual representation of how you could structure your mind map:
[Predictive Data Analytics with Python]
/ | \
[Introduction] [Essential Libraries] [Basic Examples]
/ \ / \ / \
Predictive Importance NumPy Pandas Matplotlib & Seaborn Reading Data Data Operations
Analytics Decision-making, Numerical DataFrame, Visualization Filter, sort, group
risk mgmt arrays manipulation
[Data Preprocessing] [Types of Data Analytics] [Key Algorithms] [Scikit-learn]
/ | \ / | \ / | \ \
Remove Transformation Replace Predictive Descriptive Prescriptive Installation Dataset Math Library Fill Missing Regression
Duplicates Functions, Substitute Future Summarize Actions `pip install` Iris NumPy Values Linear
Unique data mapping values outcomes past data Digits `SimpleImputer` Logistic
Classification
Naive Bayes
Decision Trees
This structure helps break down the unit into key components and subcomponents, making it easier to study and recall each part. You can draw this mind map using various mind mapping tools or even on paper for better visualization.