My Blog.

DS-U4-Short Summary

Condensed Notes: Predictive Data Analytics with Python

1. Introduction

  • Predictive Analytics: Uses historical data to predict future events.
  • Importance: Decision-making, risk management, strategic planning.

2. Essential Python Libraries

  • NumPy: Numerical operations, array/matrix support.
    • Example: import numpy as np
  • Pandas: Data manipulation, DataFrames.
    • Example: import pandas as pd
  • Matplotlib: Data visualization (low-level).
    • Example: import matplotlib.pyplot as plt
  • Seaborn: Statistical graphics (high-level).
    • Example: import seaborn as sns
  • Scikit-learn: Machine learning, data preprocessing, model evaluation.
    • Example: from sklearn.linear_model import LogisticRegression

3. Data Preprocessing

  • Removing Duplicates: Ensures unique data points.
    • Example: data.drop_duplicates()
  • Transformation Using Functions/Mapping: Modifying data values.
    • Example: data['column'].apply(lambda x: x * 2)
  • Replacing Values: Substituting specific values.
    • Example: data['column'].replace({'old_value': 'new_value'})
  • Handling Missing Data: Filling or dropping missing values.
    • Example: from sklearn.impute import SimpleImputer

4. Types of Data Analytics Model

  • Predictive Analytics: Predicts future outcomes.
  • Descriptive Analytics: Summarizes past data.
  • Prescriptive Analytics: Recommends actions.

5. Association Rules

  • Apriori Algorithm: Finds frequent itemsets, generates rules.
    • Example: from mlxtend.frequent_patterns import apriori
  • FP-Growth Algorithm: Efficient itemset mining without candidate generation.

6. Regression

  • Linear Regression: Models relationship between variables.
    • Example: from sklearn.linear_model import LinearRegression
  • Logistic Regression: Binary classification.
    • Example: from sklearn.linear_model import LogisticRegression

7. Classification

  • Naive Bayes: Probabilistic classifier based on Bayes' theorem.
    • Example: from sklearn.naive_bayes import GaussianNB
  • Decision Trees: Tree-like model for decisions.
    • Example: from sklearn.tree import DecisionTreeClassifier

8. Introduction to Scikit-learn

  • Installation: pip install scikit-learn
  • Dataset: Loading datasets like Iris.
    • Example: from sklearn.datasets import load_iris
  • Matplotlib: Visualization.
    • Example: import matplotlib.pyplot as plt
  • Filling Missing Values: Using SimpleImputer.
    • Example: from sklearn.impute import SimpleImputer
  • Regression/Classification with Scikit-learn:
    • Linear Regression: from sklearn.linear_model import LinearRegression
    • Logistic Regression: from sklearn.linear_model import LogisticRegression
    • Naive Bayes: from sklearn.naive_bayes import GaussianNB
    • Decision Trees: from sklearn.tree import DecisionTreeClassifier

Summary

  • Predictive Analytics: Use historical data to forecast future.
  • Essential Libraries: NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn.
  • Data Preprocessing: Clean, transform, and prepare data.
  • Data Analytics Models: Predictive, Descriptive, Prescriptive.
  • Key Algorithms: Apriori, FP-Growth, Linear Regression, Logistic Regression, Naive Bayes, Decision Trees.
  • Scikit-learn: Installation, dataset handling, missing values, implementing models.

Next Steps

  • Advanced Topics: Deep Learning, Time Series Analysis, NLP, Big Data Analytics, Data Visualization.
  • Projects: Apply skills in comprehensive data analytics projects.