DS-U4-MM
Creating a mind map can help visually organize the topics and subtopics of Unit 4: Predictive Data Analytics with Python, making it easier to recall and understand the concepts. Here’s a detailed description of how to structure your mind map for this unit:
Central Node: Predictive Data Analytics with Python
Branch 1: Essential Python Libraries
- NumPy
- Numerical operations
- Array and matrix support
- Pandas
- Data manipulation
- DataFrame operations
- Matplotlib and Seaborn
- Data visualization
- Statistical graphics
- Scikit-learn
- Machine learning algorithms
- Built on NumPy, SciPy, Matplotlib
Branch 2: Basic Examples
- Loading Data
- Using
pd.read_csv()
- Using
- Data Operations
- Filtering
- Sorting
- Grouping
Branch 3: Data Preprocessing
- Removing Duplicates
drop_duplicates()
- Transformation Using Functions or Mapping
apply()- Lambda functions
- Replacing Values
replace()
- Handling Missing Values
- Scikit-learn SimpleImputer
- Strategies: mean, median, most_frequent, constant
- Scikit-learn SimpleImputer
Branch 4: Types of Data Analytics
- Predictive Analytics
- Forecasting future events
- Techniques: regression, classification, time series analysis
- Descriptive Analytics
- Summarizing past data
- Techniques: data aggregation, data mining
- Prescriptive Analytics
- Recommending actions
- Techniques: optimization, simulation
Branch 5: Key Algorithms
- Association Rule Learning
- Apriori Algorithm
- Frequent itemsets, association rules
- FP-Growth Algorithm
- Efficient itemset mining
- Apriori Algorithm
- Regression Analysis
- Linear Regression
- Relationship between variables
- Logistic Regression
- Binary classification
- Linear Regression
- Classification Algorithms
- Naive Bayes
- Based on Bayes' theorem
- Decision Trees
- Tree-like model for decisions
- Naive Bayes
Branch 6: Introduction to Scikit-learn
- Installation
pip install scikit-learn
- Dataset
- Loading Iris dataset
load_iris()
- Math Library
- Utilizes NumPy
- Filling Missing Values
- Using
SimpleImputer
- Using
- Regression and Classification
- Implementing algorithms
LogisticRegression,DecisionTreeClassifier
Example Mind Map Structure
- Central Node: Predictive Data Analytics with Python
- Essential Python Libraries
- NumPy: Numerical operations, array/matrix support
- Pandas: Data manipulation, DataFrame operations
- Matplotlib/Seaborn: Data visualization, statistical graphics
- Scikit-learn: Machine learning algorithms, built on NumPy/SciPy/Matplotlib
- Basic Examples
- Loading Data: Using
pd.read_csv() - Data Operations: Filtering, sorting, grouping
- Loading Data: Using
- Data Preprocessing
- Removing Duplicates:
drop_duplicates() - Transformation:
apply(), lambda functions - Replacing Values:
replace() - Handling Missing Values:
SimpleImputer
- Removing Duplicates:
- Types of Data Analytics
- Predictive: Forecasting, regression, classification, time series analysis
- Descriptive: Summarizing past data, data aggregation, data mining
- Prescriptive: Recommending actions, optimization, simulation
- Key Algorithms
- Association Rule Learning: Apriori, FP-Growth
- Regression: Linear, Logistic
- Classification: Naive Bayes, Decision Trees
- Introduction to Scikit-learn
- Installation:
pip install scikit-learn - Dataset: Loading Iris dataset,
load_iris() - Math Library: Utilizes NumPy
- Filling Missing Values:
SimpleImputer - Regression and Classification: Implementing algorithms
- Installation:
- Essential Python Libraries
Visualization
You can visualize this mind map using mind mapping tools like XMind, MindMeister, or even on paper. Here’s a basic textual layout that you can expand into a full visual mind map:
- Predictive Data Analytics with Python
- Essential Python Libraries
- NumPy
- Pandas
- Matplotlib/Seaborn
- Scikit-learn
- Basic Examples
- Loading Data
- Data Operations
- Data Preprocessing
- Removing Duplicates
- Transformation
- Replacing Values
- Handling Missing Values
- Types of Data Analytics
- Predictive
- Descriptive
- Prescriptive
- Key Algorithms
- Association Rule Learning
- Apriori
- FP-Growth
- Regression
- Linear
- Logistic
- Classification
- Naive Bayes
- Decision Trees
- Introduction to Scikit-learn
- Installation
- Dataset
- Math Library
- Filling Missing Values
- Regression and Classification
This mind map structure helps in recalling and understanding the interconnected concepts within Unit 4, providing a visual representation that makes it easier to memorize and comprehend the material.