MM - With a suitable example explain and draw a Box plot and explain its usages.
Certainly! Here are some keywords and short sentences that you can use to create a mind map for the "Box Plot" topic. This mind map will help with quick recall and understanding of the key concepts.
Central Node: Box Plot
First-Level Nodes
- Definition
- Components
- Steps to Draw
- Usages
- Example
- Python Implementation
Second-Level Nodes
Definition:
- "Visualize data distribution"
- "Five-number summary"
- "Identify outliers"
Components:
- Minimum
- "Smallest value (excl. outliers)"
- Q1 (First Quartile)
- "25th percentile"
- Median (Q2)
- "50th percentile"
- Q3 (Third Quartile)
- "75th percentile"
- Maximum
- "Largest value (excl. outliers)"
- IQR (Interquartile Range)
- "Q3 - Q1"
- Whiskers
- "1.5 * IQR"
- Outliers
- "Beyond whiskers"
Steps to Draw:
- "Arrange data ascending"
- "Find minimum, Q1, median, Q3, maximum"
- "Calculate IQR"
- "Determine whiskers"
- "Identify outliers"
Usages:
- Compare distributions
- "Across datasets"
- Identify outliers
- "Anomaly detection"
- Understand skewness
- "Position of median"
- Highlight variability
- "Spread of values"
Example:
- "Dataset: [7, 8, 8, 9, 10, 10, 10, 11, 12, 13, 13, 14, 15, 16, 16]"
- "Min: 7"
- "Q1: 10"
- "Median: 11"
- "Q3: 14"
- "Max: 16"
- "IQR: 4"
- "Whiskers: [7, 16]"
Python Implementation:
- "Import matplotlib"
- "data = [7, 8, 8, 9, 10, 10, 10, 11, 12, 13, 13, 14, 15, 16, 16]"
- "plt.boxplot(data)"
- "plt.show()"
Mind Map Structure
Box Plot
├── Definition
│ ├── Visualize data distribution
│ ├── Five-number summary
│ └── Identify outliers
├── Components
│ ├── Minimum
│ │ └── Smallest value (excl. outliers)
│ ├── Q1 (First Quartile)
│ │ └── 25th percentile
│ ├── Median (Q2)
│ │ └── 50th percentile
│ ├── Q3 (Third Quartile)
│ │ └── 75th percentile
│ ├── Maximum
│ │ └── Largest value (excl. outliers)
│ ├── IQR (Interquartile Range)
│ │ └── Q3 - Q1
│ ├── Whiskers
│ │ └── 1.5 * IQR
│ └── Outliers
│ └── Beyond whiskers
├── Steps to Draw
│ ├── Arrange data ascending
│ ├── Find minimum, Q1, median, Q3, maximum
│ ├── Calculate IQR
│ ├── Determine whiskers
│ └── Identify outliers
├── Usages
│ ├── Compare distributions
│ │ └── Across datasets
│ ├── Identify outliers
│ │ └── Anomaly detection
│ ├── Understand skewness
│ │ └── Position of median
│ └── Highlight variability
│ └── Spread of values
├── Example
│ ├── Dataset: [7, 8, 8, 9, 10, 10, 10, 11, 12, 13, 13, 14, 15, 16, 16]
│ ├── Min: 7
│ ├── Q1: 10
│ ├── Median: 11
│ ├── Q3: 14
│ ├── Max: 16
│ ├── IQR: 4
│ └── Whiskers: [7, 16]
└── Python Implementation
├── Import matplotlib
├── data = [7, 8, 8, 9, 10, 10, 10, 11, 12, 13, 13, 14, 15, 16, 16]
├── plt.boxplot(data)
└── plt.show()
Using this structure, you can create a detailed and organized mind map that will help you recall the key aspects of Box Plots effectively.